Monday, January 12, 2009

Nanotube superbatteries

Pure power: Pure thin films of carbon nanotubes can store and carry large amounts of electrical charge, making them promising electrode materials. This scanning-electron-microscope image shows a film made up of 30 layers of the nanotubes on a silicone substrate. Credit: Journal of the American Chemical Society

Researchers at MIT have made pure, dense, thin films of carbon nanotubes that show promise as electrodes for higher-capacity batteries and supercapacitors. Dispensing with the additives previously used to hold such films together improved their electrical properties, including the ability to carry and store a large amount of charge.

Carbon nanotubes can carry and store more charge than other forms of carbon, in part because their nanoscale structure gives them a very large surface area. But conventional methods for making them into films leave significant gaps between individual nanotubes or require binding materials to hold them together. Both approaches reduce the films' conductivity--the ability to convey charge--and capacitance--the ability to store it.

The MIT group, led by chemical-engineering professor Paula Hammond and mechanical-engineering professor Yang Shao-Horn, made the new nanotube films using a technique called layer-by-layer assembly. First, the group creates water solutions of two kinds of nanotubes: one type has positively charged molecules bound to them, and the other has negatively charged molecules. The researchers then alternately dip a very thin substrate, such as a silicon wafer, into the two solutions. Because of the differences in their charge, the nanotubes are attracted to each other and hold together without the help of any glues. And nanotubes of similar charge repel each other while in solution, so they form thin, uniform layers with no clumping.

Nanotube Superbatteries
Fri, 09 Jan 2009 05:00:00 GMT

Technorati Tags:

No comments: