Sunday, April 11, 2010

MIT researchers harness viruses to split water

Crucial step toward turning water into hydrogen fuel

M13 bacteriophage CAMBRIDGE, Mass. -- A team of MIT researchers has found a novel way to mimic the process by which plants use the power of sunlight to split water and make chemical fuel to power their growth. In this case, the team used a modified virus as a kind of biological scaffold that can assemble the nanoscale components needed to split a water molecule into hydrogen and oxygen atoms.

Splitting water is one way to solve the basic problem of solar energy: It's only available when the sun shines. By using sunlight to make hydrogen from water, the hydrogen can then be stored and used at any time to generate electricity using a fuel cell, or to make liquid fuels (or be used directly) for cars and trucks.

Other researchers have made systems that use electricity, which can be provided by solar panels, to split water molecules, but the new biologically based system skips the intermediate steps and uses sunlight to power the reaction directly. The advance is described in a paper published on April 11 in Nature Nanotechnology.

The team, led by Angela Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering, engineered a common, harmless bacterial virus called M13 so that it would attract and bind with molecules of a catalyst (the team used iridium oxide) and a biological pigment (zinc porphyrins). The viruses became wire-like devices that could very efficiently split the oxygen from water molecules.

Over time, however, the virus-wires would clump together and lose their effectiveness, so the researchers added an extra step: encapsulating them in a microgel matrix, so they maintained their uniform arrangement and kept their stability and efficiency.

While hydrogen obtained from water is the gas that would be used as a fuel, the splitting of oxygen from water is the more technically challenging "half-reaction" in the process, Belcher explains, so her team focused on this part. Plants and cyanobacteria (also called blue-green algae), she says, "have evolved highly organized photosynthetic systems for the efficient oxidation of water." Other researchers have tried to use the photosynthetic parts of plants directly for harnessing sunlight, but these materials can have structural stability issues.

Belcher decided that instead of borrowing plants' components, she would borrow their methods. In plant cells, natural pigments are used to absorb sunlight, while catalysts then promote the water-splitting reaction. That's the process Belcher and her team, including doctoral student Yoon Sung Nam, the lead author of the new paper, decided to imitate.

In the team's system, the viruses simply act as a kind of scaffolding, causing the pigments and catalysts to line up with the right kind of spacing to trigger the water-splitting reaction. The role of the pigments is "to act as an antenna to capture the light," Belcher explains, "and then transfer the energy down the length of the virus, like a wire. The virus is a very efficient harvester of light, with these porphyrins attached.

"We use components people have used before," she adds, "but we use biology to organize them for us, so you get better efficiency." …

MIT researchers harness viruses to split water

No comments: