To prevent global warming, researchers and policymakers are exploring a variety of options to significantly cut the amount of carbon dioxide that reaches the atmosphere. One possible approach involves capturing greenhouse gases such as carbon dioxide at the source, then injecting them underground. Now engineers have come up with a new software tool to determine how much carbon dioxide can be sequestered safely in geological formations.
While theoretically promising, the technique has never been tested in a full-scale industrial operation. But now MIT engineers have come up with a new software tool to determine how much CO2 can be sequestered safely in geological formations.
According to the 2007 MIT study, "The Future of Coal," and other sources, capturing CO2 at coal-burning power plants and storing it in deep geological basins will mitigate its negative effects on the atmosphere.
However, injecting too much CO2 could create or enlarge underground faults that may become conduits for CO2 to travel back up to the atmosphere, said Ruben Juanes, assistant professor of civil and environmental engineering (CEE) and one of the authors of the work. "Our model is a simple, effective way to calculate how much CO2 a basin can store safely. It is the first to look at large scales and take into account the effects of flow dynamics on the stored CO2," he said.
Burying Greenhouse Gases: New Tool Could Aid Safe Underground Storage Of Carbon Dioxide
Sat, 22 Nov 2008 13:00:00 GMT
No comments:
Post a Comment